Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Food Chem ; 450: 139400, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38640536

ABSTRACT

Three protein hydrolysates from Tenebrio molitor were obtained by enzymatic hydrolysis employing two food-grade proteases (i.e. Alcalase and Flavourzyme), and a complete characterisation of their composition was done. The digestion-derived products were obtained using the INFOGEST protocol. In vitro antioxidant activity and anti-inflammatory activities were evaluated. Tenebrio molitor flour and the protein hydrolysates showed a high ability to scavenge the DPPH radical (EC50 values from 0.30 to 0.87 mg/mL). The hydrolysate obtained with a combination of the two food-grade proteases could decrease the gene expression of pro-inflammatory genes after being digested. Furthermore, the peptidome was fully determined for the first time for T. molitor hydrolysates and digests, and 40 peptides were selected based on their bioactivity to be evaluated by in silico tools, including prediction tools and molecular docking. These results provide new perspectives on the use of edible insects as sustainable and not nutritionally disadvantageous food for human consumption.

2.
Food Funct ; 15(6): 2789-2798, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38441670

ABSTRACT

Many edible insect species are attracting the attention of the food industry and consumers in Western societies due to their high content and quality of protein, and consequently, the potential to be used as a more environmentally friendly dietary source could be beneficial for humans. On the other hand, prevention of inflammatory diseases using nutritional interventions is currently being proposed as a sustainable and cost-effective strategy to improve people's health. In this regard, finding bioactive compounds such as peptides with anti-inflammatory properties from sustainable sources (e.g., edible insects) is one area of particular interest, which might have a relevant role in immunonutrition. This review aims to summarize the recent literature on the discovery of immunomodulatory peptides through in vitro studies from edible insects, as well as to describe cell-based assays aiming to prove their bioactivity. On top of that, in vivo studies (i.e., animal and human), although scarce, have been mentioned in relation to the topic. In addition, the challenges and future perspectives related to edible-insect peptides and their role in immunonutrition are discussed. The amount of literature aiming to demonstrate the potential immunomodulatory activity of edible-insect peptides is scarce but promising. Different approaches have been employed, especially cell assays and animal studies employing insect meal as supplementation in the diet. Insects such as Tenebrio molitor or Gryllodes sigillatus are some of the most studied and have demonstrated to contain bioactive peptides. Further investigations, mostly with humans, are needed in order to clearly state that peptides from edible insects may contribute to the modulation of the immune system.


Subject(s)
Edible Insects , Animals , Humans , Immunonutrition Diet , Insecta , Diet , Peptides
3.
J Agric Food Chem ; 72(6): 3189-3199, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305180

ABSTRACT

The incorporation of novel, functional, and sustainable foods in human diets is increasing because of their beneficial effects and environmental-friendly nature. Chia (Salvia hispanica L.) has proved to be a suitable source of bioactive peptides via enzymatic hydrolysis. These peptides could be responsible for modulating several physiological processes if able to reach the target organ. The bioavailable peptides contained in a hydrolysate obtained with Alcalase, as functional foods, were identified using a transwell system with Caco-2 cell culture as the absorption model. Furthermore, 20 unique peptides with a molecular weight lower than 1000 Da and the higher statistical significance of the peptide-precursor spectrum match (-10 log P) were assessed by in silico tools to suggest which peptides could be those exerting the demonstrated bioactivity. From the characterized peptides, considering the molecular features and the results obtained, the peptides AGDAHWTY, VDAHPIKAM, PNYHPNPR, and ALPPGAVHW are anticipated to be contributing to the antioxidant and/or ACE inhibitor activity of the chia protein hydrolysates.


Subject(s)
Antioxidants , Protein Hydrolysates , Humans , Protein Hydrolysates/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Caco-2 Cells , Angiotensin-Converting Enzyme Inhibitors/chemistry , Peptides/chemistry , Hydrolysis
4.
Food Res Int ; 176: 113712, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163680

ABSTRACT

Promoting dietary patterns in which the content of vegetables is higher than the current consumption of them is one of the strategies to achieve a sustainable food system while promoting health in humans. Hemp (Cannabis sativa L.) protein contains bioactive peptides that can be released via enzymatic hydrolysis. These peptides must reach the target organ in order to potentially exert bioactivity and regulate specific metabolic pathways. The peptides contained in two bioavailable hempseed protein hydrolysates (bioHPHs) showing anti-inflammatory activity were identified using a transwell system employing CACO-2 cell culture as absorption model and subjected to in silico analysis to select 10 unique peptides. These sequences were chemically synthetized to verify their activity in primary human monocytes (assessing gene expression of IL-1ß, IL-6, TNF-α, IL-4, IL-10, and TLR4), in addition to evaluate the interaction with TRL4/MD2 by molecular docking. Six peptides (DDNPRRF, SRRFHLA, RNIFKGF, VREPVFSF, QADIFNPR and SAERGFLY) showed high immunomodulatory activity in in vitro and the mechanisms of interaction with TLR4/MD2 were described. Bioavailable anti-inflammatory hempseed-derived peptides were identified, and their activity verified, suggesting the health benefits that the ingestion of HPHs could exert in humans. These findings open new opportunities for developing nutritional strategies with hemp as a dietary source of biopeptides to prevent the development and progression of inflammatory-related diseases.


Subject(s)
Cannabis , Protein Hydrolysates , Humans , Protein Hydrolysates/chemistry , Molecular Docking Simulation , Caco-2 Cells , Toll-Like Receptor 4 , Peptides/chemistry , Oligopeptides , Cannabis/chemistry , Anti-Inflammatory Agents/pharmacology
5.
Food Res Int ; 174(Pt 1): 113616, 2023 12.
Article in English | MEDLINE | ID: mdl-37986471

ABSTRACT

Hemp seeds have attracted the interest of the food industry recently, to be employed as functional food, considering their nutritional composition, highlighting the high content and quality of the proteins. In this study, ten hemp protein hydrolysates (HPHs) were obtained by enzymatic hydrolysis with two food-grade proteases from a hemp protein isolate and the inflammatory properties were evaluated in Caco-2 cell line. To this end, the gene expression and the release of proinflammatory and anti-inflammatory cytokines by Caco-2 cells stimulated with bacterial lipopolysaccharide and treated with HPHs at concentrations of 50 and 100 µg/mL were analyzed. The peptides contained in each HPH were identified and those with higher quality of the match in the spectrum were subjected to in silico analyses to determine which peptides were bioactive and contributing to the immunomodulatory activity of the hydrolysates. The results suggest that the immunomodulatory properties of these HPHs could have a beneficial effect at the level of the intestinal epithelium. The HPH20A and HPH60A + 15F exerted high immunomodulatory properties based on the cytokine levels release. The oligopeptides MAEKEGFEWVSF and GLHLPSYTNTPQLVYIVK were proposed as the most active ones. The potential of these peptides as nutraceuticals to prevent or pretreat intestinal inflammation is promising, though requires validation by in vivo assays.


Subject(s)
Cannabis , Humans , Cannabis/chemistry , Caco-2 Cells , Seeds/chemistry , Peptides/chemistry , Intestines
6.
Food Funct ; 14(22): 9962-9973, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37873616

ABSTRACT

Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases in modern society, governed by both genetic and environmental factors, such as nutritional habits. This metabolic disorder is characterized by insulin resistance, which is related to high blood glucose levels, implying negative health effects in humans, hindering the healthy ageing of people. The relationship between food and health is clear, and the ingestion of specific nutrients modulates some physiological processes, potentially implying biologically relevant changes, which can translate into a health benefit. This review aims to summarize human studies published in which the purpose was to investigate the effect of protein ingestion (in native state or as hydrolysates) on human metabolism. Overall, several studies showed how protein ingestion might induce a decrease of glucose concentration in the postprandial state (area under the curve), although it is highly dependent on the source and the dose. Other studies showed no biological effects upon protein consumption, mostly with fish-derived products. In addition, the major challenges and perspectives in this research field are highlighted, suggesting the future directions, towards which scientists should focus on. The dietary intake of proteins has been proven to likely exert a beneficial effect on diabetes-related parameters, which can have a biological relevance in the prevention and pre-treatment of diabetes. However, the number of well-designed human studies carried out to date to demonstrate the effects of specific proteins or protein hydrolysates in vivo is still scarce.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Humans , Diabetes Mellitus, Type 2/drug therapy , Protein Hydrolysates/therapeutic use , Blood Glucose/metabolism
7.
Clin Nutr ; 42(11): 2138-2150, 2023 11.
Article in English | MEDLINE | ID: mdl-37774650

ABSTRACT

BACKGROUND & AIM: When considered separately, long-term immediate-release niacin and fatty meals enriched in monounsaturated fatty acids (MUFA) decrease postprandial triglycerides, but their effects on postprandial inflammation, which is common in individuals with metabolic syndrome, are less known. Moreover, successful combination is lacking and its impact on acute disorders of the innate immune cells in the metabolic syndrome remains unclear. Here, we aimed to establish the effects from combination with niacin of different fats [butter, enriched in saturated fatty acids (SFA), olive oil, enriched in MUFA, and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on plasma inflammatory markers and circulating monocyte subsets, activation and priming at the postprandial period in individuals with metabolic syndrome. METHODS: A random-order within-subject crossover experiment was performed, in which 16 individuals with metabolic syndrome and 16 age-matched healthy volunteers took 2 g immediate-release niacin together with the corresponding fatty meal or a meal with no fat as control. In total, 128 postprandial curves were analysed. We sampled hourly over 6 h for plasma concentrations of soluble inflammatory markers and triglycerides. Circulating monocyte subsets (CD14/CD16 balance), activation (CCL2/CCR2 axis) and priming (M1/M2-like phenotype) at the time of postprandial hypertriglyceridemic peak were also addressed. RESULTS: Dietary SFA (combined with niacin) promote postprandial excursions of circulating IL-6, IL-1ß, TNF-α and CD14/CCR2-rich monocytes with a pro-inflammatory M1-like phenotype, particularly in individuals with metabolic syndrome. In contrast, dietary MUFA (combined with niacin) postprandially increased circulating CD16-rich monocytes with an anti-inflammatory M2-like phenotype. Omega-3 PUFA did not add to the effects of MUFA. CONCLUSION: The co-administration of a single-dose of immediate-release niacin with a fatty meal rich in MUFA, in contrast to SFA, suppresses postprandial inflammation at the levels of both secretory profile and monocyte response in individuals with metabolic syndrome. These findings highlight a potential role of combining niacin and dietary MUFA for the homeostatic control of inflammation and the innate immune system, identifying a new search direction for the management of disorders associated with the metabolic syndrome.


Subject(s)
Metabolic Syndrome , Niacin , Male , Humans , Fatty Acids, Monounsaturated/pharmacology , Monocytes/metabolism , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Dietary Fats/metabolism , Niacin/metabolism , Olive Oil , Postprandial Period , Fatty Acids/metabolism , Triglycerides , Inflammation/drug therapy , Inflammation/metabolism , Meals
8.
Nutrients ; 15(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37571342

ABSTRACT

BACKGROUND: Sulforaphane (SFN) is an isothiocyanate of vegetable origin with potent antioxidant and immunomodulatory properties. The characterization of its pleiotropic activity in human dendritic cells (DCs) is poorly summarized. The aim of this work was to study the immunomodulatory power of SFN in response to an inflammatory microenvironment on human monocyte-derived DCs (moDCs). METHODS: We studied the immunological response induced by SFN. Apoptosis and autophagy assays were performed using flow cytometry on moDCs and a cancer cell line (THP-1). These included moDC maturation, lymphocyte proliferation and cytokine production under different experimental conditions. We investigated whether these results were associated with an inflammatory microenvironment induced by lipopolysaccharides (LPSs). RESULTS: Our results demonstrated that SFN could interact with moDCs, significantly reducing the autophagy process and enhancing apoptosis similarly to cancer cell line THP-1 cells in a chronic inflammatory microenvironment. Under chronic inflammation, SFN modulated the phenotypical characteristics of moDCs, reducing the expression of all markers (CD80, CD83, CD86, HLA-DR and PD-L1). SFN significantly reduced the Th2 proliferative response, with a decrease in the IL-9 and IL-13 levels. Although we did not observe any changes in the regulatory proliferative response, we noted an increase in the IL-10 levels. CONCLUSIONS: These findings demonstrate that SFN exerts protective effects against LPS-induced inflammation via the modulation of moDCs/T cells towards a regulatory profile. SFN may be a potential candidate for the treatment of pathologies with an inflammatory profile.


Subject(s)
Cytokines , Isothiocyanates , Humans , Cytokines/metabolism , Isothiocyanates/pharmacology , Isothiocyanates/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Dendritic Cells , Immunity , Monocytes/metabolism , Cell Differentiation , Cells, Cultured
9.
Nutrients ; 15(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37375585

ABSTRACT

The immune system is somehow related to all the metabolic pathways, in a bidirectional way, and the nutritional interventions affecting these pathways might have a relevant impact on the inflammatory status of the individuals. Food-derived peptides have been demonstrated to exert several bioactivities by in vitro or animal studies. Their potential to be used as functional food is promising, considering the simplicity of their production and the high value of the products obtained. However, the number of human studies performed until now to demonstrate effects in vivo is still scarce. Several factors must be taken into consideration to carry out a high-quality human study to demonstrate immunomodulatory-promoting properties of a test item. This review aims to summarize the recent human studies published in which the purpose was to demonstrate bioactivity of protein hydrolysates, highlighting the main results and the limitations that can restrict the relevance of the studies. Results collected are promising, although in some studies, physiological changes could not be observed. When responses were observed, they sometimes did not refer to relevant parameters and the immunomodulatory properties could not be clearly established with the current evidence. Well-designed clinical trials are needed in order to evaluate the role of protein hydrolysates in immunonutrition.


Subject(s)
Peptides , Protein Hydrolysates , Animals , Humans , Peptides/pharmacology , Peptides/chemistry , Functional Food
10.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37096486

ABSTRACT

Olea europaea L. is the source of virgin olive oil (VOO). During its extraction, a high amount of by-products (pomace, mill wastewaters, leaves, stones, and seeds) is originated, which possess an environmental problem. If the generation of waste cannot be prevented, its economic value must be recovered and its effects on the environment and climate change must be avoided or minimized. The bioactive compounds (e.g., phenols, pectins, peptides) of these by-product fractions are being investigated as nutraceutical due to the beneficial properties it might have. In this review, the aim is to summarize the in vivo studies carried out in animals and humans with bioactive compounds exclusively obtained from olive by-products, aiming to demonstrate the potential health benefits these products can exert, as well as to describe its use in the food industry as bioactive ingredient. Several food matrices have been fortified with olive by-products fractions, leading to an improvement of properties. Animal and human studies suggest the benefits of ingesting olive-derived products to promote health. However, the investigation until now is scarce and consequently, well-designed human studies are required in order to fully address and confirm the safety and health-promoting properties of olive oil by-products.

11.
Food Chem ; 420: 136104, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37059020

ABSTRACT

Lupins are an interesting source of nutrients, part of the Fabaceae family. More specifically, narrow-leafed lupin (Lupinus angustifolius L.) is a legume, largely produced in Australia, which is used both for human food and animal fodder. There is a growing interest in plant proteins-derived products due to benefits for the ecosystem and lower production costs compared to traditional animal sources of protein. This review aimed to summarize major and minor chemical components in Lupinus angustifolius L., and potential health benefits of this plant and product thereof. In particular, the protein fraction of Lupinus and their biological properties are described. L. angustifolius seed and proteins by-products can be used as a valuable source of high value-added compounds for diverse food products with the goal to maximize its economic value.


Subject(s)
Lupinus , Animals , Humans , Lupinus/chemistry , Ecosystem , Seeds/chemistry , Australia
12.
Foods ; 12(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36900529

ABSTRACT

The immune-inflammatory, glucose homeostasis, and antioxidant response have a crucial role in the prevention of non-communicable chronic diseases, according to the World Health Organization (WHO) [...].

13.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769268

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. The physiopathology of AD is well described by the presence of two neuropathological features: amyloid plaques and tau neurofibrillary tangles. In the last decade, neuroinflammation and cellular stress have gained importance as key factors in the development and pathology of AD. Chronic cellular stress occurs in degenerating neurons. Stress Granules (SGs) are nonmembranous organelles formed as a response to stress, with a protective role; however, SGs have been noted to turn into pathological and neurotoxic features when stress is chronic, and they are related to an increased tau aggregation. On the other hand, correct lipid metabolism is essential to good function of the brain; apolipoproteins are highly associated with risk of AD, and impaired cholesterol efflux and lipid transport are associated with an increased risk of AD. In this review, we provide an insight into the relationship between cellular stress, SGs, protein aggregation, and lipid metabolism in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Protein Aggregates , Neurofibrillary Tangles/metabolism , Brain/metabolism , Lipoproteins/metabolism , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism
14.
Nutrients ; 15(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36839300

ABSTRACT

The defense mechanism against harmful stimuli is inflammation. Indeed, neurodegenerative disorders can arise as a result of a persistent neuroinflammation. Beta-amyloid (Aß1-42) is an early trigger in the origination of Alzheimer's disease, leading to synaptic and cognitive impairments. Virgin olive oil (VOO) is correlated with a decreased risk of developing immune-inflammatory disorders, but the potential effects of the phenolic fraction (PF) from VOO in the modulation of neuroinflammatory processes in neutrophils remain unknown. In this study, we investigated the ability of the PF to modulate the activation of Aß1-42-stimulated primary human neutrophils, focusing on the expression of gene and surface markers and the release of pro-inflammatory and chemoattractant mediators. Down-regulation of pro-inflammatory cytokine gene expression in Aß1-42-treated neutrophils, among other changes, was reported. Furthermore, pretreatment with PF prevented neutrophil activation. The beneficial effects in the modulation of inflammatory responses show the relevance of VOO to achieve a healthier diet that can help prevent inflammatory diseases.


Subject(s)
Neutrophils , Phenols , Humans , Olive Oil/pharmacology , Phenols/pharmacology , Amyloid beta-Peptides , Diet
15.
Antioxidants (Basel) ; 12(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36829823

ABSTRACT

The Mediterranean diet (MD) has beneficial effects on human health, which is evidenced by the observation of lower incidence rates of chronic diseases in Mediterranean countries. The MD dietary pattern is rich in antioxidants, such as melatonin, which is a hormone produced mainly by the pineal gland and controls several circadian rhythms. Additionally, melatonin is found in foods, such as fruit and vegetables. The purpose of this systematic review was to assess the melatonin content in Mediterranean foods and to evaluate the influence of the MD on melatonin levels in both humans and model organisms. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane Library and Web of Science) and data were extracted. A total of 31 records were chosen. MD-related foods, such as tomatoes, olive oil, red wine, beer, nuts, and vegetables, showed high melatonin contents. The consumption of specific MD foods increases melatonin levels and improves the antioxidant status in plasma.

16.
Nutrients ; 15(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36615882

ABSTRACT

In 2010, the Mediterranean diet was recognized by UNESCO as an Intangible Cultural Heritage of Humanity. Olive oil is the most characteristic food of this diet due to its high nutraceutical value. The positive effects of olive oil have often been attributed to its minor components; however, its oleic acid (OA) content (70-80%) is responsible for its many health properties. OA is an effective biomolecule, although the mechanism by which OA mediates beneficial physiological effects is not fully understood. OA influences cell membrane fluidity, receptors, intracellular signaling pathways, and gene expression. OA may directly regulate both the synthesis and activities of antioxidant enzymes. The anti-inflammatory effect may be related to the inhibition of proinflammatory cytokines and the activation of anti-inflammatory ones. The best-characterized mechanism highlights OA as a natural activator of sirtuin 1 (SIRT1). Oleoylethanolamide (OEA), derived from OA, is an endogenous ligand of the peroxisome proliferator-activated receptor alpha (PPARα) nuclear receptor. OEA regulates dietary fat intake and energy homeostasis and has therefore been suggested to be a potential therapeutic agent for the treatment of obesity. OEA has anti-inflammatory and antioxidant effects. The beneficial effects of olive oil may be related to the actions of OEA. New evidence suggests that oleic acid may influence epigenetic mechanisms, opening a new avenue in the exploration of therapies based on these mechanisms. OA can exert beneficial anti-inflammatory effects by regulating microRNA expression. In this review, we examine the cellular reactions and intracellular processes triggered by OA in T cells, macrophages, and neutrophils in order to better understand the immune modulation exerted by OA.


Subject(s)
Diet, Mediterranean , Oleic Acid , Oleic Acid/pharmacology , Oleic Acid/therapeutic use , Olive Oil/pharmacology , Oleic Acids/pharmacology , Anti-Inflammatory Agents/pharmacology
17.
Nutrients ; 15(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36678282

ABSTRACT

Nutraceuticals act as cellular and functional modulators, contributing to the homeostasis of physiological processes. In an inflammatory microenvironment, these functional foods can interact with the immune system by modulating or balancing the exacerbated proinflammatory response. In this process, immune cells, such as antigen-presenting cells (APCs), identify danger signals and, after interacting with T lymphocytes, induce a specific effector response. Moreover, this conditions their change of state with phenotypical and functional modifications from the resting state to the activated and effector state, supposing an increase in their energy requirements that affect their intracellular metabolism, with each immune cell showing a unique metabolic signature. Thus, nutraceuticals, such as polyphenols, vitamins, fatty acids, and sulforaphane, represent an active option to use therapeutically for health or the prevention of different pathologies, including obesity, metabolic syndrome, and diabetes. To regulate the inflammation associated with these pathologies, intervention in metabolic pathways through the modulation of metabolic energy with nutraceuticals is an attractive strategy that allows inducing important changes in cellular properties. Thus, we provide an overview of the link between metabolism, immune function, and nutraceuticals in chronic inflammatory processes associated with obesity and diabetes, paying particular attention to nutritional effects on APC and T cell immunometabolism, as well as the mechanisms required in the change in energetic pathways involved after their activation.


Subject(s)
Antigen-Presenting Cells , T-Lymphocytes , Humans , Antigen-Presenting Cells/metabolism , Macrophages/metabolism , Inflammation/metabolism , Dietary Supplements , Obesity/metabolism
18.
Int J Biol Macromol ; 225: 1280-1290, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36427620

ABSTRACT

The relationship between the functionality and composition of high-density lipoproteins (HDL) is yet not fully studied, and little is known about the influence of the diet in HDL proteome. Therefore, the aim of this research was to elucidate the HDL proteome associated to postprandial hyperlipidemia. Male volunteers were recruited for an interventional study with high fatty acid-based meals. Blood samples were collected before the intake (baseline), and 2-3 (postprandial peak) and 5-6 (postprandial post peak) hours later. HDL were purified and the protein composition was quantified by LC-MS/MS. Statistical analysis was performed by lineal models (amica) and by ANOVA and multi-t-test of the different conditions (MetaboAnalyst). Additionally, a clustering of the expression profiles of each protein was done with coseq R package (RStudio). Initially, 320 proteins were identified but only 119 remained after the filtering. APOM, APOE, APOB, and APOA2, proteins previously identified in the HDL proteome, were the only proteins with a statistically significant altered expression in postprandial hyperlipidemia when compared to baseline (p values <0.05 and logFC >1). In conclusion, we have been able to describe several behaviors of the whole HDL proteome during the postprandial hyperlipidemic metabolism.


Subject(s)
Hyperlipidemias , Lipoproteins, HDL , Humans , Male , Proteome , Healthy Volunteers , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry , Postprandial Period , Triglycerides
19.
Nutrients ; 16(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38201831

ABSTRACT

Malnutrition refers to a person's status as under- or overnourished, and it is usually associated with an inflammation status, which can subsequently imply a different health status, as the risk of infection is increased, along with a deterioration of the immune system. Children's immune systems are generally more susceptible to problems than adults. In the situation of malnutrition, because malnourished children's immune systems are compromised, they are more likely to die. However, little is known about the underlying mechanism of altered immune functioning and how it relates to starvation. Nutritional interventions have been reported as cost-effective strategies to prevent or treat the development of malnourishment, considering the link between food intake and health, especially in children, and also the susceptibility of this population to diseases and how their health status during childhood might affect their long-term physiological growth. The ingestion of specific nutrients (e.g., vitamins or oligoelements) has been reported to contribute to the proper functioning of children's immune systems. In this review, we aim to describe the basis of malnutrition and how this is linked to the immune system, considering the role of nutrients in the modulation of the immune system and the risk of infection that can occur in these situations in children, as well as to identify nutritional interventions to improve their health.


Subject(s)
Malnutrition , Starvation , Adult , Child , Humans , Child Health , Health Status , Immune System
20.
Food Funct ; 13(22): 11604-11614, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36268610

ABSTRACT

The increase in the world population along with new policies aimed at a more sustainable world has led to the need of searching for new food sources, which are environmentally friendly, implying healthy and nutritious diets. This study explored the biological activity of two kiwicha (Amaranthus caudatus L.) protein hydrolysates obtained with the aid of Bioprotease LA-660 regarding their anti-inflammatory response at the intestinal level, employing the CACO-2 cell line. The results obtained showed that the in vitro administration of these hydrolysates decreased the expression of proinflammatory cytokines, increased the expression of anti-inflammatory cytokines, and decreased the gene expression of the major components of inflammasomes in the intestinal CACO-2 cell model. To the best of our knowledge, this is the first study involving the evaluation of the anti-inflammatory activity of kiwicha hydrolysates at the intestinal level, employing the CACO-2 cell model and its ultrastructural characterization using scanning electron microscopy. We conclude that the Amaranthus caudatus hydrolysates are a valuable source of active peptides that take part as functional ingredients in food and nutraceutical preparations.


Subject(s)
Amaranthus , Inflammasomes , Humans , Inflammasomes/metabolism , Amaranthus/chemistry , Protein Hydrolysates/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Caco-2 Cells , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...